The screening of the 3'UTR sequence of LRRK2 identified an association between the rs66737902 polymorphism and Parkinson's disease

Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic determinants of familial and sporadic Parkinson's disease (PD). Most of the mutational screenings analyzed the exon-coding sequence. Our aim was to determine whether LRRK2 3' untranslated region (UTR) va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of human genetics 2014-06, Vol.59 (6), p.346-348
Hauptverfasser: Cardo, Lucía F, Coto, Eliecer, Ribacoba, René, Mata, Ignacio F, Moris, Germán, Menéndez, Manuel, Alvarez, Victoria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mutations in the leucine-rich repeat kinase 2 gene (LRRK2) are the most common genetic determinants of familial and sporadic Parkinson's disease (PD). Most of the mutational screenings analyzed the exon-coding sequence. Our aim was to determine whether LRRK2 3' untranslated region (UTR) variants were associated with the risk of developing PD in a large cohort of patients (n=743) and controls (n=523) from Spain. We identified a total of 12 3'UTR variants (two new). Single-nucleotide polymorphism (SNP) rs66737902 C allele was overrepresented in patients (P=0.005; odds ratio=1.47). This SNP was in linkage disequilibrium with the p.R1441G mutation, but the association remained significant among mutation-negative cases. We found a significant lower level of the LRRK2 transcript in the Substantia nigra (SN) of PD postmortem donors (n=9) who were rs66737902 C carriers (P=0.01). This SNP was predicted to affect a binding site for miR-138-2-3p. We showed that this microRNA was expressed in all the SN samples. In conclusion, we found a significant association between SNP rs66737902 and the risk of developing PD. This effect on PD risk could be explained by differences in LRRK2 transcript levels between the two alleles.
ISSN:1434-5161
1435-232X
DOI:10.1038/jhg.2014.26