The Role of a Polar/Subtropical Jet Superposition in the May 2010 Nashville Flood

Contributions to the increased poleward moisture flux that characterized the second day of the 1–3 May Nashville, Tennessee, flood of 2010 are examined from the perspective of polar and subtropical jet superposition and its influence on the secondary ageostrophic circulation. Employing the Sawyer–El...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Weather and forecasting 2014-08, Vol.29 (4), p.954-974
Hauptverfasser: WINTERS, Andrew C, MARTIN, Jonathan E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Contributions to the increased poleward moisture flux that characterized the second day of the 1–3 May Nashville, Tennessee, flood of 2010 are examined from the perspective of polar and subtropical jet superposition and its influence on the secondary ageostrophic circulation. Employing the Sawyer–Eliassen circulation equation, the analysis reveals that the poleward moisture flux attributed to the jet increased nearly 120% prior to the second day of the event in response to the superposed jet’s ageostrophic circulation, helping to further fuel the production of heavy rainfall. The full Sawyer–Eliassen circulation associated with the superposed jet is further partitioned into its geostrophic and diabatic components. The geostrophic forcing drove midtropospheric ascent that fueled the production of deep convection and the record rainfall. The diabatic component, through forcing lower-tropospheric ascent and vigorous lower-tropospheric poleward moisture flux, provided the link between the tropical moisture and the deep convective environment. Since superposed jets, by their nature, develop on the poleward edge of the tropical or subtropical air, it is suggested that such a mutually reinforcing interaction between these two component forcings of the secondary circulation may routinely characterize the involvement of superposed jet structures in high-impact weather events.
ISSN:0882-8156
1520-0434
DOI:10.1175/WAF-D-13-00124.1