Current-Driven Spin Dynamics of Artificially Constructed Quantum Magnets
The future of nanoscale spin-based technologies hinges on a fundamental understanding and dynamic control of atomic-scale magnets. The role of the substrate conduction electrons on the dynamics of supported atomic magnets is still a question of interest lacking experimental insight. We characterized...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2013-01, Vol.339 (6115), p.55-59 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The future of nanoscale spin-based technologies hinges on a fundamental understanding and dynamic control of atomic-scale magnets. The role of the substrate conduction electrons on the dynamics of supported atomic magnets is still a question of interest lacking experimental insight. We characterized the temperature-dependent dynamical response of artificially constructed magnets, composed of a few exchange-coupled atomic spins adsorbed on a metallic substrate, to spin-polarized currents driven and read out by a magnetic scanning tunneling microscope tip. The dynamics, reflected by two-state spin noise, is quantified by a model that considers the interplay between quantum tunneling and sequential spin transitions driven by electron spin-flip processes and accounts for an observed spin-transfer torque effect. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1228519 |