Isolation and Characterization of the Diatom Phaeodactylum Delta 5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris

The diatom Phaeodactylum tricornutum can accumulate eicosapentaenoic acid (EPA) up to 30% of the total fatty acids. This species has been targeted for isolating gene encoding desaturases and elongases for long-chain polyunsaturated fatty acid (LC-PUFA) metabolic engineering. Here we first report the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine drugs 2014-03, Vol.12 (3), p.1317-1334
Hauptverfasser: Jiang, Mulan, Guo, Bing, Wan, Xia, Gong, Yangmin, Zhang, Yinbo, Hu, Chuanjiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The diatom Phaeodactylum tricornutum can accumulate eicosapentaenoic acid (EPA) up to 30% of the total fatty acids. This species has been targeted for isolating gene encoding desaturases and elongases for long-chain polyunsaturated fatty acid (LC-PUFA) metabolic engineering. Here we first report the cloning and characterization of Delta 5-elongase gene in P. tricornutum. A full-length cDNA sequence, designated PhtELO5, was shown to contain a 1110 bp open reading frame encoding a 369 amino acid polypeptide. The putative protein contains seven transmembrane regions and two elongase characteristic motifs of FLHXYHH and MYSYY, the latter being typical for microalgal Delta 5-elongases. Phylogenetic analysis indicated that PhtELO5 belongs to the ELO5 group, tightly clustered with the counterpart of Thalassiosira pseudonana. Heterologous expression of PhtELO5 in Pichia pastoris confirmed that it encodes a specific Delta 5-elongase capable of elongating arachidonic acid and eicosapentaenoic acid. Co-expression of PhtELO5 and IsFAD4 (a [increment]4-desaturase from Isochrysis sphaerica) demonstrated that the high-efficiency biosynthetic pathway of docosahexaenoic acid was assembled in the transgenic yeast. Substrate competition revealed that PhtELO5 exhibited higher activity towards n-3 PUFA than n-6 PUFA. It is hypothesized that Phaeodactylum ELO5 may preferentially participate in biosynthesis of transgenic LC-PUFA via a n-3 pathway in the yeast host.
ISSN:1660-3397
DOI:10.3390/md12031317