Decadal scale oscillations and trend in the Indian monsoon rainfall
The emerging need for extended climate prediction requires a consideration of the relative roles of climate change and low-frequency natural variability on decadal scale. Addressing this issue, this study has shown that the variability of the Indian monsoon rainfall (IMR) consists of three decadal s...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2014-07, Vol.43 (1-2), p.319-331 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The emerging need for extended climate prediction requires a consideration of the relative roles of climate change and low-frequency natural variability on decadal scale. Addressing this issue, this study has shown that the variability of the Indian monsoon rainfall (IMR) consists of three decadal scale oscillations and a nonlinear trend during 1901–2004. The space–time structures of the decadal oscillations are described. The IMR decadal oscillations are shown to be associated with Atlantic Multidecadal Oscillation (AMO), Atlantic tripole oscillation and Pacific Decadal Oscillation (PDO). The sea surface temperatures (SSTs) of the North Pacific and North Atlantic Oceans are also resolved as nonlinear decadal oscillations. The SST AMO mode has high positive correlation with IMR while the SST tripole mode and SST PDO have negative correlation. The trend in IMR increases during the first half of the period and decreases during the second half. The IMR trend is modified when combined with the three decadal oscillations. |
---|---|
ISSN: | 0930-7575 1432-0894 |
DOI: | 10.1007/s00382-013-1870-1 |