Effect of pH on enzyme stability in soils
The pH stability of urease, acid phosphatase, alkaline phosphatase and phosphodiesterase in soils was investigated by first incubating a soil sample at the indicated pH (1–13) for 24 h and then measuring the activity at its optimal pH under standardized conditions. Generally, the decline in enzyme a...
Gespeichert in:
Veröffentlicht in: | Soil biology & biochemistry 1982, Vol.14 (5), p.433-437 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The pH stability of urease, acid phosphatase, alkaline phosphatase and phosphodiesterase in soils was investigated by first incubating a soil sample at the indicated pH (1–13) for 24 h and then measuring the activity at its optimal pH under standardized conditions. Generally, the decline in enzyme activity in a pH-profile near the optimum pH range was due to a reversible reaction that involved ionization or deionization of acidic or basic groups in the active centre of the enzyme-protein. Irreversible inactivation of the enzyme was particularly evident at the lower and higher ranges of acidic and alkaline conditions. Results showed that the pH stability of soil enzymes was highly dependent on the soils being assayed. The variation among soils may be attributed to the diversity of vegetation, micro-organisms and soil fauna as sources contributing to the enzyme activity and to the protective sites which allowed entrapment of the enzyme within colloidal humus and organo-mineral complexes. Adherence of the enzyme-protein to the humic-clay fractions would allow some resistance to pH denaturation. |
---|---|
ISSN: | 0038-0717 1879-3428 |
DOI: | 10.1016/0038-0717(82)90101-8 |