Strong negative effects of simulated heat waves in a tropical butterfly

Climate change poses a significant challenge to all natural systems on Earth. Especially increases in extreme weather events such as heat waves have the potential to strongly affect biodiversity, though their effects are poorly understood because of a lack of empirical data. Therefore, we here explo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2014-08, Vol.217 (Pt 16), p.2892-2898
Hauptverfasser: Fischer, Klaus, Klockmann, Michael, Reim, Elisabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Climate change poses a significant challenge to all natural systems on Earth. Especially increases in extreme weather events such as heat waves have the potential to strongly affect biodiversity, though their effects are poorly understood because of a lack of empirical data. Therefore, we here explore the sensitivity of a tropical ectotherm, which are in general believed to have a low warming tolerance, to experimentally simulated climate change using ecologically realistic diurnal temperature cycles. Increasing the mean temperature permanently by 3°C had mostly minor effects on developmental traits in the butterfly Bicyclus anynana. Simulated heat waves (strongly elevated temperatures for some time though retaining the same overall temperature mean), in contrast, caused strong negative effects by prolonging development time (by up to 10%) and reducing body mass (-21%), especially when combined with reduced relative humidity. Detrimental effects were carried over into the adult stage, diminishing subsequent performance. Most strikingly, higher temperatures suppressed adult immune function (haemocytes: -54%, lysozyme activity: -32%), which may potentially change the way species interact with antagonists. Heat waves thus reduced fitness parameters by 10-25% for development time and body mass and by up to 54% for immune parameters even in this plastic and widespread butterfly, exemplifying the potentially dramatic impact of extreme weather events on biodiversity.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.106245