Using Remote Biomonitoring to Understand Heterogeneity in Immune-Responses and Disease-Dynamics in Small, Free-Living Animals

Despite the ubiquity of parasites and pathogens, behavioral and physiological responses to infection vary widely across individuals. Although such variation can have pronounced effects on population-level processes, including the transmission of infectious disease, the study of individual responses...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Integrative and comparative biology 2014-09, Vol.54 (3), p.377-386
Hauptverfasser: Adelman, James S., Moyers, Sahnzi C., Hawley, Dana M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite the ubiquity of parasites and pathogens, behavioral and physiological responses to infection vary widely across individuals. Although such variation can have pronounced effects on population-level processes, including the transmission of infectious disease, the study of individual responses to infection in free-living animals remains a challenge. To fully understand the causes and consequences of heterogeneous responses to infection, research in ecoimmunology and disease-ecology must incorporate minimally invasive techniques to track individual animals in natural settings. Here, we review how several technologies, collectively termed remote biomonitoring, enable the collection of data on behavioral and physiological responses to infection in small, free-living animals. Specifically, we focus on the use of radiotelemetry and radio-frequency identification to study fever, sickness-behaviors (including lethargy and anorexia), and rates of inter-individual contact in the wild, all of which vary widely across individuals and impact the spread of pathogens within populations. In addition, we highlight future avenues for field studies of these topics using emerging technologies such as global positioning system tracking and tri-axial accelerometry. Through the use of such remote biomonitoring techniques, researchers can gain valuable insights into why responses to infection vary so widely and how this variation impacts the spread and evolution of infectious diseases.
ISSN:1540-7063
1557-7023
DOI:10.1093/icb/icu088