Development of Microstrain in Aged Lithium Transition Metal Oxides

Cathode materials with high energy density for lithium-ion batteries are highly desired in emerging applications in automobiles and stationary energy storage for the grid. Lithium transition metal oxide with concentration gradient of metal elements inside single particles was investigated as a promi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-08, Vol.14 (8), p.4873-4880
Hauptverfasser: Lee, Eung-Ju, Chen, Zonghai, Noh, Hyung-Ju, Nam, Sang Cheol, Kang, Sung, Kim, Do Hyeong, Amine, Khalil, Sun, Yang-Kook
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cathode materials with high energy density for lithium-ion batteries are highly desired in emerging applications in automobiles and stationary energy storage for the grid. Lithium transition metal oxide with concentration gradient of metal elements inside single particles was investigated as a promising high-energy-density cathode material. Electrochemical characterization demonstrated that a full cell with this cathode can be continuously operated for 2500 cycles with a capacity retention of 83.3%. Electron microscopy and high-resolution X-ray diffraction were employed to investigate the structural change of the cathode material after this extensive electrochemical testing. It was found that microstrain developed during the continuous charge/discharge cycling, resulting in cracking of nanoplates. This finding suggests that the performance of the cathode material can be further improved by optimizing the concentration gradient to minimize the microstrain and to reduce the lattice mismatch during cycling.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl5022859