Free Radical Generation and Concentration in a Plasma Polymer: The Effect of Aromaticity

Plasma polymer films (PPF) have increasing applications in many fields due to the unique combination of properties of this class of materials. Among notable features arising from the specifics of plasma polymerization synthesis, a high surface reactivity can be advantageously used when exploited car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-08, Vol.6 (15), p.12395-12405
Hauptverfasser: Ershov, Sergey, Khelifa, Farid, Lemaur, Vincent, Cornil, Jérôme, Cossement, Damien, Habibi, Youssef, Dubois, Philippe, Snyders, Rony
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasma polymer films (PPF) have increasing applications in many fields due to the unique combination of properties of this class of materials. Among notable features arising from the specifics of plasma polymerization synthesis, a high surface reactivity can be advantageously used when exploited carefully. It is related to the presence of free radicals generated during the deposition process through manifold molecular bond scissions in the energetic plasma environment. In ambient atmosphere, these radicals undergo autoxidation reactions resulting in undesired polymer aging. However, when the reactivity of surface radicals is preserved and they are put in direct contact with a chemical group of interest, a specific surface functionalization or grafting of polymeric chains can be achieved. Therefore, the control of the surface free radical density of a plasma polymer is crucially important for a successful grafting. The present investigation focuses on the influence of the hydrocarbon precursor type, aromatic vs aliphatic, on the generation and concentration of free radicals on the surface of the PPF. Benzene and cyclohexane were chosen as model precursors. First, in situ FTIR analysis of the plasma phase supplemented by density functional theory calculations allowed the main fragmentation routes of precursor molecules in the discharge to be identified as a function of energy input. Using nitric oxide (NO) chemical labeling in combination with X-ray photoelectron spectroscopy analysis, a quantitative evaluation of concentration of surface free radicals as a function of input power has been assessed for both precursors. Different evolutions of the surface free radical density for the benzene- and cyclohexane-based PPF, namely, a continuous increase versus stabilization to a plateau, are attributed to different plasma polymerization mechanisms and resulting structures as illustrated by PPF characterization findings. The control of surface free radical density can be achieved through the stabilization of radicals due to the proximity of incorporated aromatic rings. Aging tests highlighted the inevitable random oxidation of plasma polymers upon exposure to air and the necessity of free radical preservation for a controlled surface functionalization.
ISSN:1944-8244
1944-8252
DOI:10.1021/am502255p