High-Rate, Ultralong Cycle-Life Lithium/Sulfur Batteries Enabled by Nitrogen-Doped Graphene

Nitrogen-doped graphene (NG) is a promising conductive matrix material for fabricating high-performance Li/S batteries. Here we report a simple, low-cost, and scalable method to prepare an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside the NG sheets (S@NG). We s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2014-08, Vol.14 (8), p.4821-4827
Hauptverfasser: Qiu, Yongcai, Li, Wanfei, Zhao, Wen, Li, Guizhu, Hou, Yuan, Liu, Meinan, Zhou, Lisha, Ye, Fangmin, Li, Hongfei, Wei, Zhanhua, Yang, Shihe, Duan, Wenhui, Ye, Yifan, Guo, Jinghua, Zhang, Yuegang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitrogen-doped graphene (NG) is a promising conductive matrix material for fabricating high-performance Li/S batteries. Here we report a simple, low-cost, and scalable method to prepare an additive-free nanocomposite cathode in which sulfur nanoparticles are wrapped inside the NG sheets (S@NG). We show that the Li/S@NG can deliver high specific discharge capacities at high rates, that is, ∼1167 mAh g–1 at 0.2 C, ∼1058 mAh g–1 at 0.5 C, ∼971 mAh g–1 at 1 C, ∼802 mAh g–1 at 2 C, and ∼606 mAh g–1 at 5 C. The cells also demonstrate an ultralong cycle life exceeding 2000 cycles and an extremely low capacity-decay rate (0.028% per cycle), which is among the best performance demonstrated so far for Li/S cells. Furthermore, the S@NG cathode can be cycled with an excellent Coulombic efficiency of above 97% after 2000 cycles. With a high active S content (60%) in the total electrode weight, the S@NG cathode could provide a specific energy that is competitive to the state-of-the-art Li-ion cells even after 2000 cycles. The X-ray spectroscopic analysis and ab initio calculation results indicate that the excellent performance can be attributed to the well-restored C–C lattice and the unique lithium polysulfide binding capability of the N functional groups in the NG sheets. The results indicate that the S@NG nanocomposite based Li/S cells have a great potential to replace the current Li-ion batteries.
ISSN:1530-6984
1530-6992
DOI:10.1021/nl5020475