Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions
We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2014-08, Vol.6 (15), p.12467-12478 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12478 |
---|---|
container_issue | 15 |
container_start_page | 12467 |
container_title | ACS applied materials & interfaces |
container_volume | 6 |
creator | Zhang, Boce Luo, Yaguang Pearlstein, Arne J Aplin, Jesse Liu, Yi Bauchan, Gary R Payne, Gregory F Wang, Qin Nou, Xiangwu Millner, Patricia D |
description | We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant–bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications. |
doi_str_mv | 10.1021/am502384q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1553317117</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1553317117</sourcerecordid><originalsourceid>FETCH-LOGICAL-a315t-e30037fc512c0a047f9d61dda507f1a51afe4da3e069f39cc3350401bb1738d83</originalsourceid><addsrcrecordid>eNptkE1OwzAQhS0EoqWw4ALIGyRYFMZx3KTLtqJQqRKVKOto4tjgKolbO1l0xx24ISfBqD8rVvOj7z3NPEKuGTwwiNgjVgIinsabE9Jlwzjup5GITo99HHfIhfcrgAGPQJyTTiQAkihhXWKnmDsjsTG2plbTsbGVqVQTVmW5pQtsGuVqVdC31mmUylOsC7r8VMbR0XpdHqSNpQtnc1N_0EWJdfPz9T1GGbQG6awONQyB85fkTGPp1dW-9sj79Gk5eenPX59nk9G8j5yJpq84AE-0FCySgBAnelgMWFGggEQzFAy1igvkCgZDzYdSci4gBpbnLOFpkfIeudv5rp3dtMo3WWW8VGW4TdnWZ0wIzlnCAt4j9ztUOuu9UzpbO1Oh22YMsr98s2O-gb3Z27Z5pYojeQg0ALc7AKXPVrZ1dfjyH6Nfsk6DaA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553317117</pqid></control><display><type>article</type><title>Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions</title><source>MEDLINE</source><source>ACS Publications</source><creator>Zhang, Boce ; Luo, Yaguang ; Pearlstein, Arne J ; Aplin, Jesse ; Liu, Yi ; Bauchan, Gary R ; Payne, Gregory F ; Wang, Qin ; Nou, Xiangwu ; Millner, Patricia D</creator><creatorcontrib>Zhang, Boce ; Luo, Yaguang ; Pearlstein, Arne J ; Aplin, Jesse ; Liu, Yi ; Bauchan, Gary R ; Payne, Gregory F ; Wang, Qin ; Nou, Xiangwu ; Millner, Patricia D</creatorcontrib><description>We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant–bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/am502384q</identifier><identifier>PMID: 25007271</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Biomimetics - methods ; Dimethylpolysiloxanes - pharmacology ; Escherichia coli - drug effects ; Escherichia coli - growth & development ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Flow Cytometry ; Microbial Viability ; Microscopy ; Plant Leaves - chemistry ; Plant Leaves - drug effects ; Pressure ; Sepharose - chemistry ; Spinacia oleracea - drug effects ; Spinacia oleracea - microbiology ; Wettability</subject><ispartof>ACS applied materials & interfaces, 2014-08, Vol.6 (15), p.12467-12478</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a315t-e30037fc512c0a047f9d61dda507f1a51afe4da3e069f39cc3350401bb1738d83</citedby><cites>FETCH-LOGICAL-a315t-e30037fc512c0a047f9d61dda507f1a51afe4da3e069f39cc3350401bb1738d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/am502384q$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/am502384q$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,2767,27083,27931,27932,56745,56795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25007271$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Boce</creatorcontrib><creatorcontrib>Luo, Yaguang</creatorcontrib><creatorcontrib>Pearlstein, Arne J</creatorcontrib><creatorcontrib>Aplin, Jesse</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Bauchan, Gary R</creatorcontrib><creatorcontrib>Payne, Gregory F</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Nou, Xiangwu</creatorcontrib><creatorcontrib>Millner, Patricia D</creatorcontrib><title>Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant–bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications.</description><subject>Biomimetics - methods</subject><subject>Dimethylpolysiloxanes - pharmacology</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - growth & development</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Flow Cytometry</subject><subject>Microbial Viability</subject><subject>Microscopy</subject><subject>Plant Leaves - chemistry</subject><subject>Plant Leaves - drug effects</subject><subject>Pressure</subject><subject>Sepharose - chemistry</subject><subject>Spinacia oleracea - drug effects</subject><subject>Spinacia oleracea - microbiology</subject><subject>Wettability</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1OwzAQhS0EoqWw4ALIGyRYFMZx3KTLtqJQqRKVKOto4tjgKolbO1l0xx24ISfBqD8rVvOj7z3NPEKuGTwwiNgjVgIinsabE9Jlwzjup5GITo99HHfIhfcrgAGPQJyTTiQAkihhXWKnmDsjsTG2plbTsbGVqVQTVmW5pQtsGuVqVdC31mmUylOsC7r8VMbR0XpdHqSNpQtnc1N_0EWJdfPz9T1GGbQG6awONQyB85fkTGPp1dW-9sj79Gk5eenPX59nk9G8j5yJpq84AE-0FCySgBAnelgMWFGggEQzFAy1igvkCgZDzYdSci4gBpbnLOFpkfIeudv5rp3dtMo3WWW8VGW4TdnWZ0wIzlnCAt4j9ztUOuu9UzpbO1Oh22YMsr98s2O-gb3Z27Z5pYojeQg0ALc7AKXPVrZ1dfjyH6Nfsk6DaA</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Zhang, Boce</creator><creator>Luo, Yaguang</creator><creator>Pearlstein, Arne J</creator><creator>Aplin, Jesse</creator><creator>Liu, Yi</creator><creator>Bauchan, Gary R</creator><creator>Payne, Gregory F</creator><creator>Wang, Qin</creator><creator>Nou, Xiangwu</creator><creator>Millner, Patricia D</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20140813</creationdate><title>Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions</title><author>Zhang, Boce ; Luo, Yaguang ; Pearlstein, Arne J ; Aplin, Jesse ; Liu, Yi ; Bauchan, Gary R ; Payne, Gregory F ; Wang, Qin ; Nou, Xiangwu ; Millner, Patricia D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a315t-e30037fc512c0a047f9d61dda507f1a51afe4da3e069f39cc3350401bb1738d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Biomimetics - methods</topic><topic>Dimethylpolysiloxanes - pharmacology</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - growth & development</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Flow Cytometry</topic><topic>Microbial Viability</topic><topic>Microscopy</topic><topic>Plant Leaves - chemistry</topic><topic>Plant Leaves - drug effects</topic><topic>Pressure</topic><topic>Sepharose - chemistry</topic><topic>Spinacia oleracea - drug effects</topic><topic>Spinacia oleracea - microbiology</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Boce</creatorcontrib><creatorcontrib>Luo, Yaguang</creatorcontrib><creatorcontrib>Pearlstein, Arne J</creatorcontrib><creatorcontrib>Aplin, Jesse</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Bauchan, Gary R</creatorcontrib><creatorcontrib>Payne, Gregory F</creatorcontrib><creatorcontrib>Wang, Qin</creatorcontrib><creatorcontrib>Nou, Xiangwu</creatorcontrib><creatorcontrib>Millner, Patricia D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Boce</au><au>Luo, Yaguang</au><au>Pearlstein, Arne J</au><au>Aplin, Jesse</au><au>Liu, Yi</au><au>Bauchan, Gary R</au><au>Payne, Gregory F</au><au>Wang, Qin</au><au>Nou, Xiangwu</au><au>Millner, Patricia D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2014-08-13</date><risdate>2014</risdate><volume>6</volume><issue>15</issue><spage>12467</spage><epage>12478</epage><pages>12467-12478</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant–bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25007271</pmid><doi>10.1021/am502384q</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2014-08, Vol.6 (15), p.12467-12478 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1553317117 |
source | MEDLINE; ACS Publications |
subjects | Biomimetics - methods Dimethylpolysiloxanes - pharmacology Escherichia coli - drug effects Escherichia coli - growth & development Escherichia coli - metabolism Escherichia coli - physiology Flow Cytometry Microbial Viability Microscopy Plant Leaves - chemistry Plant Leaves - drug effects Pressure Sepharose - chemistry Spinacia oleracea - drug effects Spinacia oleracea - microbiology Wettability |
title | Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T02%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Biomimetically%20Patterned%20Surfaces%20and%20Their%20Application%20to%20Probing%20Plant%E2%80%93Bacteria%20Interactions&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Zhang,%20Boce&rft.date=2014-08-13&rft.volume=6&rft.issue=15&rft.spage=12467&rft.epage=12478&rft.pages=12467-12478&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/am502384q&rft_dat=%3Cproquest_cross%3E1553317117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553317117&rft_id=info:pmid/25007271&rfr_iscdi=true |