Fabrication of Biomimetically Patterned Surfaces and Their Application to Probing Plant–Bacteria Interactions

We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2014-08, Vol.6 (15), p.12467-12478
Hauptverfasser: Zhang, Boce, Luo, Yaguang, Pearlstein, Arne J, Aplin, Jesse, Liu, Yi, Bauchan, Gary R, Payne, Gregory F, Wang, Qin, Nou, Xiangwu, Millner, Patricia D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have developed a two-step replica molding method for rapid fabrication of biomimetically patterned plant surfaces (BPS) using polydimethylsiloxane (PDMS-BPS) and agarose (AGAR-BPS). Beyond providing multiple identical specimens that faithfully reproduce leaf surface microstructure, this approach also offers unique chemical, physical, and biological features. PDMS-BPS provide good structural durability for SEM examination, have surface wettability comparable to plant surfaces for coating development, and allow for real-time monitoring of biosynthesis through incorporation into microfluidic devices. AGAR-BPS are compatible with bacterial growth, recovery, and quantification, and enable investigation of the effects of surface topography on spatially varying survival and inactivation of Escherichia coli cells during biocide treatment. Further development and application of these biomimetically patterned surfaces to study (and possibly modify) other aspects of plant–bacteria interactions can provide insight into controlling pathogen contamination in a wide range of applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/am502384q