Controlled ex-vivo plasma hydrolysis of valaciclovir to acyclovir demonstration using tandem mass spectrometry

ABSTRACT Plasma estimation of valaciclovir, an antiviral drug, is challenging due to both in‐vivo and ex‐vivo hydrolysis to active metabolite acyclovir. A simultaneous method is described involving the solid‐phase ion‐exchange extraction procedure requiring 100 μL of plasma volume, a reverse‐phase L...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical chromatography 2011-11, Vol.25 (11), p.1189-1200
Hauptverfasser: Goswami, Dipanjan, Khuroo, Arshad, Gurule, Sanjay, Modhave, Yogesh, Monif, Tausif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Plasma estimation of valaciclovir, an antiviral drug, is challenging due to both in‐vivo and ex‐vivo hydrolysis to active metabolite acyclovir. A simultaneous method is described involving the solid‐phase ion‐exchange extraction procedure requiring 100 μL of plasma volume, a reverse‐phase Lichrosphere RP Select B (125 × 6 mm, 5 μm) column and isocratic mobile phase to achieve the desired chromatographic separation. ESI‐MS/MS multiple reaction monitoring in positive polarity, detected mass pairs for valaciclovir (m/z 325.5 → 152.2), acyclovir (m/z 226.3 → 152.2) and respective internal standards valganciclovir (m/z 307.1 → 220.3) and acyclovir‐d4 (m/z 230.2 → 152.0). Fully fledged method validation was evaluated as per current regulatory requirements and results were deemed acceptable. The plasma samples showed extensive hydrolysis of valaciclovir when collected or processed at room temperature, without buffer stabilization prior to storage at −15°C. Our results showed that using prechilled K3EDTA vacutainers immersed in an iced‐water bath during blood sample collection, and addition of 50% orthophosphoric acid solution to plasma samples prior to storage at −50°C for at least 120 days controlled the hydrolysis of valaciclovir to acyclovir. While monitoring drug absorption into systematic circulation, the valaciclovir to acyclovir formation ratio was improved to 1:20 in healthy volunteers for the first time. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0269-3879
1099-0801
DOI:10.1002/bmc.1590