Electrophysiological evidence for polarization sensitivity in the camera-type eyes of the aquatic predacious insect larva Thermonectus marmoratus

Polarization sensitivity has most often been studied in mature insects, yet it is likely that larvae also make use of this visual modality. The aquatic larvae of the predacious diving beetle Thermonectus marmoratus are highly successful visually guided predators, with a UV-sensitive proximal retina...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental biology 2012-10, Vol.215 (Pt 20), p.3577-3586
Hauptverfasser: Stowasser, Annette, Buschbeck, Elke K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polarization sensitivity has most often been studied in mature insects, yet it is likely that larvae also make use of this visual modality. The aquatic larvae of the predacious diving beetle Thermonectus marmoratus are highly successful visually guided predators, with a UV-sensitive proximal retina that, according to its ultrastructure, has three distinct cell types with anatomical attributes that are consistent with polarization sensitivity. In the present study we used electrophysiological methods and single-cell staining to confirm polarization sensitivity in the proximal retinas of both principal eyes of these larvae. As expected from their microvillar orientation, cells of type T1 are most sensitive to vertically polarized light, while cells of type T2 are most sensitive to horizontally polarized light. In addition, T3 cells probably constitute a second population of cells that are most sensitive to light with vertical e-vector orientation, characterized by shallower polarization modulations, and smaller polarization sensitivity (PS) values than are typical for T1 cells. The level of PS values found in this study suggests that polarization sensitivity probably plays an important role in the visual system of these larvae. Based on their natural history and behavior, possible functions are: (1) finding water after hatching, (2) finding the shore before pupation, and (3) making prey more visible, by filtering out horizontally polarized haze, and/or using polarization features for prey detection.
ISSN:0022-0949
1477-9145
DOI:10.1242/jeb.075028