Pharmacophore identification of ascofuranone, potent inhibitor of cyanide-insensitive alternative oxidase of Trypanosoma brucei
Trypanosoma brucei is a parasite that causes human African trypanosomiasis (HAT). The parasites depend on the cyanide-insensitive trypanosome alternative oxidase (TAO) for their vital aerobic respiration. Ascofuranone (AF), a potent and specific sub-nanomolar inhibitor of the TAO quinol oxidase, is...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 2013-03, Vol.153 (3), p.267-273 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Trypanosoma brucei is a parasite that causes human African trypanosomiasis (HAT). The parasites depend on the cyanide-insensitive trypanosome alternative oxidase (TAO) for their vital aerobic respiration. Ascofuranone (AF), a potent and specific sub-nanomolar inhibitor of the TAO quinol oxidase, is a potential novel drug with selectivity for HAT, because mammalian hosts lack the enzyme. To elucidate not only the inhibition mechanism but also the inhibitor-enzyme interaction, AF derivatives were designed and synthesized, and the structure-activity relationship was evaluated. Here we identified the pharmacophore of AF that interacts with TAO. The detailed inhibitory profiles indicated that the 1-formyl and 6-hydroxyl groups, which might contribute to intramolecular hydrogen bonding and/or serve as hydrogen-bonding donors, were responsible for direct interaction with the enzyme. |
---|---|
ISSN: | 0021-924X 1756-2651 |
DOI: | 10.1093/jb/mvs135 |