Regulation of B cell linker protein transcription by PU.1 and Spi-B in murine B cell acute lymphoblastic leukemia
B cell acute lymphoblastic leukemia (B-ALL) is frequently associated with mutations or chromosomal translocations of genes encoding transcription factors. Conditional deletion of genes encoding the E26-transformation-specific transcription factors, PU.1 and Spi-B, in B cells (ΔPB mice) leads to B-AL...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2012-10, Vol.189 (7), p.3347-3354 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | B cell acute lymphoblastic leukemia (B-ALL) is frequently associated with mutations or chromosomal translocations of genes encoding transcription factors. Conditional deletion of genes encoding the E26-transformation-specific transcription factors, PU.1 and Spi-B, in B cells (ΔPB mice) leads to B-ALL in mice at 100% incidence rate and with a median survival of 21 wk. We hypothesized that PU.1 and Spi-B may redundantly activate transcription of genes encoding tumor suppressors in the B cell lineage. Characterization of aging ΔPB mice showed that leukemia cells expressing IL-7R were found in enlarged thymuses. IL-7R-expressing B-ALL cells grew in culture in response to IL-7 and could be maintained as cell lines. Cultured ΔPB cells expressed reduced levels of B cell linker protein (BLNK), a known tumor suppressor gene, compared with controls. The Blnk promoter contained a predicted PU.1 and/or Spi-B binding site that was required for promoter activity and occupied by PU.1 and/or Spi-B as determined by chromatin immunoprecipitation. Restoration of BLNK expression in cultured ΔPB cells opposed IL-7-dependent proliferation and induced early apoptosis. We conclude that the tumor suppressor BLNK is a target of transcriptional activation by PU.1 and Spi-B in the B cell lineage. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.1201267 |