IL-17A plays a critical role in the pathogenesis of liver fibrosis through hepatic stellate cell activation

Liver fibrosis is a severe, life-threatening clinical condition resulting from nonresolving hepatitis of different origins. IL-17A is critical in inflammation, but its relation to liver fibrosis remains elusive. We find increased IL-17A expression in fibrotic livers from HBV-infected patients underg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2013-08, Vol.191 (4), p.1835-1844
Hauptverfasser: Tan, Zhongming, Qian, Xiaofeng, Jiang, Runqiu, Liu, Qianghui, Wang, Youjing, Chen, Chen, Wang, Xuehao, Ryffel, Bernhard, Sun, Beicheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Liver fibrosis is a severe, life-threatening clinical condition resulting from nonresolving hepatitis of different origins. IL-17A is critical in inflammation, but its relation to liver fibrosis remains elusive. We find increased IL-17A expression in fibrotic livers from HBV-infected patients undergoing partial hepatectomy because of cirrhosis-related early-stage hepatocellular carcinoma in comparison with control nonfibrotic livers from uninfected patients with hepatic hemangioma. In fibrotic livers, IL-17A immunoreactivity localizes to the inflammatory infiltrate. In experimental carbon tetrachloride-induced liver fibrosis of IL-17RA-deficient mice, we observe reduced neutrophil influx, proinflammatory cytokines, hepatocellular necrosis, inflammation, and fibrosis as compared with control C57BL/6 mice. IL-17A is produced by neutrophils and T lymphocytes expressing the Th17 lineage-specific transcription factor Retinoic acid receptor-related orphan receptor γt. Furthermore, hepatic stellate cells (HSCs) isolated from naive C57BL/6 mice respond to IL-17A with increased IL-6, α-smooth muscle actin, collagen, and TGF-β mRNA expression, suggesting an IL-17A-driven fibrotic process. Pharmacologic ERK1/2 or p38 inhibition significantly attenuated IL-17A-induced HSC activation and collagen expression. In conclusion, IL-17A(+) Retinoic acid receptor-related orphan receptor γt(+) neutrophils and T cells are recruited into the injured liver driving a chronic, fibrotic hepatitis. IL-17A-dependent HSC activation may be critical for liver fibrosis. Thus, blockade of IL-17A could potentially benefit patients with chronic hepatitis and liver fibrosis.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.1203013