Specific Maltose Derivatives Modulate the Swarming Motility of Nonswarming Mutant and Inhibit Bacterial Adhesion and Biofilm Formation by Pseudomonas aeruginosa

We have demonstrated that specific synthetic maltose derivatives activate the swarming motility of a Pseudomonas aeruginosa nonswarming mutant (rhlA) at low concentration, but inhibit it at high concentration. Although these molecules are not microbicidal, active maltose derivatives with bulky hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chembiochem : a European journal of chemical biology 2014-07, Vol.15 (10), p.1514-1523
Hauptverfasser: Shetye, Gauri S., Singh, Nischal, Jia, Changqing, Nguyen, Chan D. K., Wang, Guirong, Luk, Yan-Yeung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We have demonstrated that specific synthetic maltose derivatives activate the swarming motility of a Pseudomonas aeruginosa nonswarming mutant (rhlA) at low concentration, but inhibit it at high concentration. Although these molecules are not microbicidal, active maltose derivatives with bulky hydrocarbon groups inhibited bacterial adhesion, and exhibited biofilm inhibition and dispersion (IC50 ∼20 μM and DC50 ∼30 μM, respectively). Because the swarming motility of the rhlA mutant is abolished by the lack natural rhamnolipids, the swarming activation suggests that maltose derivatives are analogues of rhamnolipids. Together, these results suggest a new approach of controlling multiple bacterial activities (bacterial adhesion, biofilm formation, and swarming motility) by a set of disaccharide‐based molecules. An end to films: By testing a series of synthetic maltose derivatives, we discovered compounds that modulate swarming motility inhibit bacterial adhesion and biofilm formation and promote biofilm dispersion of Pseudomonas aeruginosa. This provides a new avenue for controlling this pathogen.
ISSN:1439-4227
1439-7633
DOI:10.1002/cbic.201402093