A near edge X-ray absorption fine structure study of oxidized single crystal and polycrystalline diamond surfaces
The influence of oxidizing environments on single crystal diamond and polycrystalline chemical vapor deposited CVD diamond films was studied using the near edge X-ray absorption fine structure (NEXAFS) pre-edge region in both bulk and surface sensitive modes. The NEXAFS of (100) oriented single crys...
Gespeichert in:
Veröffentlicht in: | Diamond and related materials 2014-05, Vol.45, p.20-27 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The influence of oxidizing environments on single crystal diamond and polycrystalline chemical vapor deposited CVD diamond films was studied using the near edge X-ray absorption fine structure (NEXAFS) pre-edge region in both bulk and surface sensitive modes. The NEXAFS of (100) oriented single crystal diamond was measured following (i) exposure to a microwave (MW) hydrogen plasma, (ii) annealing to 1000°C, (iii) exposure of the as annealed surface to H2O, and (iv) exposure of the as annealed surface to O2. From these measurements particular surface bonding configurations have been assigned to features in the pre-edge structure. The NEXAFS of microcrystalline CVD diamond films was studied following different oxidative treatments using (i) a thermal atomic oxygen (AO) environment, (ii) a hyperthermal (5eV) AO source, and (iii) an RF oxygen plasma exposure. The nature of the surface layer was found to be different for differently oxidized surfaces. These treatments were carried out as part of a study of CVD diamond durability in the low Earth orbit space environment.
•The NEXAFS of CVD diamond films was studied following different oxidative treatments.•The nature of the surface layer is different for differently oxidized surfaces.•This work broadens the application of NEXAFS for carbon-based material studies.•The atomic oxygen interaction with diamond films is important for space applications. |
---|---|
ISSN: | 0925-9635 1879-0062 |
DOI: | 10.1016/j.diamond.2014.03.004 |