Bending solution of third-order orthotropic Reddy plates with asymmetric interfacial crack

In this paper Reddy’s third-order shear deformable plate theory is applied to asymmetrically delaminated orthotropic composite plates under antiplane–inplane shear fracture mode. A double-plate system is utilized to capture the mechanical behavior of the uncracked plate portion. An assumed displacem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2014-07, Vol.51 (14), p.2598-2619
1. Verfasser: Szekrenyes, Andras
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper Reddy’s third-order shear deformable plate theory is applied to asymmetrically delaminated orthotropic composite plates under antiplane–inplane shear fracture mode. A double-plate system is utilized to capture the mechanical behavior of the uncracked plate portion. An assumed displacement field is used and modified in order to satisfy the traction-free conditions at the top and bottom plate boundaries. Moreover, the system of exact kinematic conditions was also implemented into the novel plate model. An important improvement of this work compared to previous papers is the continuity condition of the shear strains at the interface of the double-plate system. Applying these conditions it is shown that the nineteen parameters of the third-order displacement field can be reduced to nine. Using the simplified displacement field the governing equations are derived, as well. The solution of a simply-supported delaminated plate is presented using the state-space model and the displacement, strain and stress fields are determined, respectively. The energy release rate and mode mixity distributions are calculated using the 3D J-integral. The analytical results are compared to those by finite element computations and it is concluded that the present model is the most accurate one among the previous plate theory-based approaches.
ISSN:0020-7683
1879-2146
DOI:10.1016/j.ijsolstr.2014.03.027