Modeling of composite fibrous porous diffusion media

To engineer the desired properties of fibrous porous media, a parametric modeling approach is needed to support the rational design of the materials before the fabrication. In this study, we propose a methodology that enables the accurate representation of three-dimensional (3D) microstructures of f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2014-06, Vol.39 (17), p.9375-9386
Hauptverfasser: DIDARI, Sima, ASADI, Arash, YAN WANG, HARRIS, Tequila A. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To engineer the desired properties of fibrous porous media, a parametric modeling approach is needed to support the rational design of the materials before the fabrication. In this study, we propose a methodology that enables the accurate representation of three-dimensional (3D) microstructures of fibrous porous media and prediction of their transport properties. Toray TGP-H-060 gas diffusion layer (GDL) is selected as an example to demonstrate the feasibility of the suggested design methodology. The detailed microstructure of the GDL with the inclusion of locally distributed binder is constructed using an extended periodic surface (PS) modeling technique. A 3D morphological approach is taken to create the binder distribution within the fibrous microstructure. Transport properties including permeability, relative diffusivity, and tortuosity and local structure characteristics of the generated microstructure, under different binder loading are calculated. It is shown that the detailed model of the fiber-binder composite has a strong influence on the predicted properties.
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2014.04.011