A lightweight active service migration framework for computational offloading in mobile cloud computing

Cloud computing enables access to the widespread services and resources in cloud datacenters for mitigating resource limitations in low-potential client devices. Computational cloud is an attractive platform for computational offloading due to the attributes of scalability and availability of resour...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of supercomputing 2014-05, Vol.68 (2), p.978-995
Hauptverfasser: Shiraz, Muhammad, Gani, Abdullah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cloud computing enables access to the widespread services and resources in cloud datacenters for mitigating resource limitations in low-potential client devices. Computational cloud is an attractive platform for computational offloading due to the attributes of scalability and availability of resources. Therefore, mobile cloud computing (MCC) leverages the application processing services of computational clouds for enabling computational-intensive and ubiquitous mobile applications on smart mobile devices (SMDs). Computational offloading frameworks focus on offloading intensive mobile applications at different granularity levels which involve resource-intensive mechanism of application profiling and partitioning at runtime. As a result, the energy consumption cost (ECC) and turnaround time of the application is increased. This paper proposes an active service migration (ASM) framework for computational offloading to cloud datacenters, which employs lightweight procedure for the deployment of runtime distributed platform. The proposed framework employs coarse granularity level and simple developmental and deployment procedures for computational offloading in MCC. ASM is evaluated by benchmarking prototype application on the Android devices in the real MCC environment. It is found that the turnaround time of the application reduces up to 45 % and ECC of the application reduces up to 33 % in ASM-based computational offloading as compared to traditional offloading techniques which shows the lightweight nature of the proposed framework for computational offloading.
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-013-1076-7