On the structure of the quasiconvex hull in planar elasticity
Let K 1 and K 2 be compact sets of real 2 × 2 matrices with positive determinant. Suppose that both sets are frame invariant, meaning invariant under the left action of the special orthogonal group. Then we give an algebraic characterization for K 1 and K 2 to be incompatible for homogeneous gradien...
Gespeichert in:
Veröffentlicht in: | Calculus of variations and partial differential equations 2014-07, Vol.50 (3-4), p.481-489 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
K
1
and
K
2
be compact sets of real
2
×
2
matrices with positive determinant. Suppose that both sets are frame invariant, meaning invariant under the left action of the special orthogonal group. Then we give an algebraic characterization for
K
1
and
K
2
to be incompatible for homogeneous gradient Young measures. This result can be used to determine the structure of the quasiconvex hull for sets of energy wells in planar elasticity. |
---|---|
ISSN: | 0944-2669 1432-0835 |
DOI: | 10.1007/s00526-013-0643-3 |