Comparison of numerical methods for modeling laser mode locking with saturable gain
The widely used split-step Fourier method has difficulties when solving partial differential equations with saturable gain. Here, we describe a modified split-step Fourier method, and we compare it to several different algorithms for solving the Haus mode-locking equation and related equations that...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. B, Optical physics Optical physics, 2013-11, Vol.30 (11), p.3064-3074 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The widely used split-step Fourier method has difficulties when solving partial differential equations with saturable gain. Here, we describe a modified split-step Fourier method, and we compare it to several different algorithms for solving the Haus mode-locking equation and related equations that are used to model mode-locked lasers and other optical oscillators and amplifiers with saturable gain. These equations all include the product of a scalar nonlinearity and a stiff nonlinear operator. We find that a modified split-step method is the easiest to program with the same level of reliability and accuracy as the other methods that we investigated. |
---|---|
ISSN: | 0740-3224 1520-8540 |
DOI: | 10.1364/JOSAB.30.003064 |