Graphs with no 7-wheel subdivision
The topological containment problem, TC(H), has been shown to be polynomial-time solvable for any fixed pattern graph H, but practical algorithms have been developed only for a few specific pattern graphs. Among these are the wheels with four, five, and six spokes. This paper examines the topologica...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2014-07, Vol.327, p.9-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The topological containment problem, TC(H), has been shown to be polynomial-time solvable for any fixed pattern graph H, but practical algorithms have been developed only for a few specific pattern graphs. Among these are the wheels with four, five, and six spokes. This paper examines the topological containment problem where the pattern graph is a wheel with seven spokes, and gives a result that describes graphs with no W7-subdivision, showing how they can be built up, using certain operations, from smaller ‘pieces’ that meet certain conditions. We also discuss algorithmic aspects of the problem. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2014.03.014 |