Similar physical simulation of microflow in micro-channel by centrifugal casting process
By means of similar physical simulation, liquid metal filling flow pattern in the microscale during the centrifugal casting process was studied. It was found that, in microscale, the flow channel with the maximum cross-sectional area was filled first, and the micro flow channels with 0.1 mm in diame...
Gespeichert in:
Veröffentlicht in: | Transactions of Nonferrous Metals Society of China 2014-04, Vol.24 (4), p.1094-1100 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By means of similar physical simulation, liquid metal filling flow pattern in the microscale during the centrifugal casting process was studied. It was found that, in microscale, the flow channel with the maximum cross-sectional area was filled first, and the micro flow channels with 0.1 mm in diameter were filled when the rotational speed was increased to 964 r/min. The total fluid energy remained constant during the mould filling, and the changes of cross-sectional area only occurred in the microflow channels with 0.3 mm in diameter. Filling velocity increased with processing time, and a peak value was achieved rapidly, followed by a gentle increase as the process proceeded further. The time required to achieve the peak filling rate decreased dramatically with increase of rotational speed. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(14)63167-8 |