Size-dependent polymer/CuInS sub(2) solar cells with tunable synthesis of CuInS sub(2) quantum dots

This paper reports the size-dependent performance in polymer/CuInS sub(2) solar cells with tunable synthesis of chalcopyrite CuInS sub(2) quantum dots (QDs) by the solvothermal method. The CuInS sub(2) QDs of 3.2-5.4 nm in size are fine tuned by the reaction time in the solvothermal process with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science in semiconductor processing 2014-08, Vol.24, p.117-125
Hauptverfasser: Yue, Wenjin, Lan, Mingyang, Zhang, Guoqiang, Sun, Wenshan, Wang, Songming, Nie, Guangjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper reports the size-dependent performance in polymer/CuInS sub(2) solar cells with tunable synthesis of chalcopyrite CuInS sub(2) quantum dots (QDs) by the solvothermal method. The CuInS sub(2) QDs of 3.2-5.4 nm in size are fine tuned by the reaction time in the solvothermal process with the slow supply of In super(3+) ions during the crystallization, and the band gaps increased with QDs sizes decreasing according to the results from the characterization of sizes, morphologies, component elements, valence states and band gaps of CuInS sub(2) QDs. We fabricated MEH-PPV/CuInS sub(2) solar cells, and the photoactive layer of device displayed size-dependent light-harvesting, charge separation and transport ability. Moreover, the solar cells exhibit size-dependent short circuit current (J sub(sc)) and open circuit voltage (V sub(oc)), with higher performance in both J sub(sc) and V sub(oc) for smaller CuInS sub(2) QDs, resulting in the maximum power conversion efficiency of ca. 0.12% under the monochromic illumination at 470 nm; CuInS sub(2) QDs actually serve as an effective electron acceptor material for the MEH-PPV/CuInS sub(2) solar cells with the wide spectral response extending from 300 to 900 nm.
ISSN:1369-8001
DOI:10.1016/j.mssp.2014.03.019