A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices

In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2014-08, Vol.328, p.88-95
1. Verfasser: Mezo, Istvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 95
container_issue
container_start_page 88
container_title Discrete mathematics
container_volume 328
creator Mezo, Istvan
description In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.
doi_str_mv 10.1016/j.disc.2014.03.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551073722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X14001162</els_id><sourcerecordid>1551073722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR-IEiU1VykNUYgOiO8uPMbikTrETUP-eREUsWY1Gc89I9yB0TklOCRWX69z6ZHJGaJETnhNGD9CE1hXLRE1Xh2hCCGUZF-XqGJ2ktCbDLng9QY8z_OGDxa3Di76B6FXAod9oiAmbNgQwHVjctfj13XcBdn_HAbhpvxsf3nCjus4bSKfoyKkmwdnvnKKX28Xz_D5bPt09zGfLzPCq6jLFCuGELkqjjNaFFdZxEBUww1VpodCuKrVxtL6qWcEsGKo0B6cU1CCMZnyKLvZ_t7H97CF1cjOUh6ZRAdo-SVqWlFS8YmOU7aMmtilFcHIb_UbFnaREjubkWo7m5GhOEi4HcwN0vYdgKPHlIcpkPAQD1sfBh7St_w__AesPeQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551073722</pqid></control><display><type>article</type><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mezo, Istvan</creator><creatorcontrib>Mezo, Istvan</creatorcontrib><description>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2014.03.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analogue ; Construction ; Dowling lattices ; Dowling numbers ; Eulerian numbers ; Lattices ; Mathematical analysis ; Proving ; Whitney numbers</subject><ispartof>Discrete mathematics, 2014-08, Vol.328, p.88-95</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</citedby><cites>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2014.03.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mezo, Istvan</creatorcontrib><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><title>Discrete mathematics</title><description>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</description><subject>Analogue</subject><subject>Construction</subject><subject>Dowling lattices</subject><subject>Dowling numbers</subject><subject>Eulerian numbers</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Proving</subject><subject>Whitney numbers</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR-IEiU1VykNUYgOiO8uPMbikTrETUP-eREUsWY1Gc89I9yB0TklOCRWX69z6ZHJGaJETnhNGD9CE1hXLRE1Xh2hCCGUZF-XqGJ2ktCbDLng9QY8z_OGDxa3Di76B6FXAod9oiAmbNgQwHVjctfj13XcBdn_HAbhpvxsf3nCjus4bSKfoyKkmwdnvnKKX28Xz_D5bPt09zGfLzPCq6jLFCuGELkqjjNaFFdZxEBUww1VpodCuKrVxtL6qWcEsGKo0B6cU1CCMZnyKLvZ_t7H97CF1cjOUh6ZRAdo-SVqWlFS8YmOU7aMmtilFcHIb_UbFnaREjubkWo7m5GhOEi4HcwN0vYdgKPHlIcpkPAQD1sfBh7St_w__AesPeQ8</recordid><startdate>20140806</startdate><enddate>20140806</enddate><creator>Mezo, Istvan</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140806</creationdate><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><author>Mezo, Istvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analogue</topic><topic>Construction</topic><topic>Dowling lattices</topic><topic>Dowling numbers</topic><topic>Eulerian numbers</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Proving</topic><topic>Whitney numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezo, Istvan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezo, Istvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</atitle><jtitle>Discrete mathematics</jtitle><date>2014-08-06</date><risdate>2014</risdate><volume>328</volume><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2014.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-365X
ispartof Discrete mathematics, 2014-08, Vol.328, p.88-95
issn 0012-365X
1872-681X
language eng
recordid cdi_proquest_miscellaneous_1551073722
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Analogue
Construction
Dowling lattices
Dowling numbers
Eulerian numbers
Lattices
Mathematical analysis
Proving
Whitney numbers
title A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kind%20of%20Eulerian%20numbers%20connected%20to%20Whitney%20numbers%20of%20Dowling%20lattices&rft.jtitle=Discrete%20mathematics&rft.au=Mezo,%20Istvan&rft.date=2014-08-06&rft.volume=328&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2014.03.021&rft_dat=%3Cproquest_cross%3E1551073722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551073722&rft_id=info:pmid/&rft_els_id=S0012365X14001162&rfr_iscdi=true