A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices
In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2014-08, Vol.328, p.88-95 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 95 |
---|---|
container_issue | |
container_start_page | 88 |
container_title | Discrete mathematics |
container_volume | 328 |
creator | Mezo, Istvan |
description | In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani. |
doi_str_mv | 10.1016/j.disc.2014.03.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1551073722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012365X14001162</els_id><sourcerecordid>1551073722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR-IEiU1VykNUYgOiO8uPMbikTrETUP-eREUsWY1Gc89I9yB0TklOCRWX69z6ZHJGaJETnhNGD9CE1hXLRE1Xh2hCCGUZF-XqGJ2ktCbDLng9QY8z_OGDxa3Di76B6FXAod9oiAmbNgQwHVjctfj13XcBdn_HAbhpvxsf3nCjus4bSKfoyKkmwdnvnKKX28Xz_D5bPt09zGfLzPCq6jLFCuGELkqjjNaFFdZxEBUww1VpodCuKrVxtL6qWcEsGKo0B6cU1CCMZnyKLvZ_t7H97CF1cjOUh6ZRAdo-SVqWlFS8YmOU7aMmtilFcHIb_UbFnaREjubkWo7m5GhOEi4HcwN0vYdgKPHlIcpkPAQD1sfBh7St_w__AesPeQ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1551073722</pqid></control><display><type>article</type><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Mezo, Istvan</creator><creatorcontrib>Mezo, Istvan</creatorcontrib><description>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</description><identifier>ISSN: 0012-365X</identifier><identifier>EISSN: 1872-681X</identifier><identifier>DOI: 10.1016/j.disc.2014.03.021</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Analogue ; Construction ; Dowling lattices ; Dowling numbers ; Eulerian numbers ; Lattices ; Mathematical analysis ; Proving ; Whitney numbers</subject><ispartof>Discrete mathematics, 2014-08, Vol.328, p.88-95</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</citedby><cites>FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.disc.2014.03.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Mezo, Istvan</creatorcontrib><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><title>Discrete mathematics</title><description>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</description><subject>Analogue</subject><subject>Construction</subject><subject>Dowling lattices</subject><subject>Dowling numbers</subject><subject>Eulerian numbers</subject><subject>Lattices</subject><subject>Mathematical analysis</subject><subject>Proving</subject><subject>Whitney numbers</subject><issn>0012-365X</issn><issn>1872-681X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwA6y8ZJPgR-IEiU1VykNUYgOiO8uPMbikTrETUP-eREUsWY1Gc89I9yB0TklOCRWX69z6ZHJGaJETnhNGD9CE1hXLRE1Xh2hCCGUZF-XqGJ2ktCbDLng9QY8z_OGDxa3Di76B6FXAod9oiAmbNgQwHVjctfj13XcBdn_HAbhpvxsf3nCjus4bSKfoyKkmwdnvnKKX28Xz_D5bPt09zGfLzPCq6jLFCuGELkqjjNaFFdZxEBUww1VpodCuKrVxtL6qWcEsGKo0B6cU1CCMZnyKLvZ_t7H97CF1cjOUh6ZRAdo-SVqWlFS8YmOU7aMmtilFcHIb_UbFnaREjubkWo7m5GhOEi4HcwN0vYdgKPHlIcpkPAQD1sfBh7St_w__AesPeQ8</recordid><startdate>20140806</startdate><enddate>20140806</enddate><creator>Mezo, Istvan</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140806</creationdate><title>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</title><author>Mezo, Istvan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-a246f6b45cacbb4d6df3e67e2c3a5de4bf75bcf1898242dec1ab3efaae8e6cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analogue</topic><topic>Construction</topic><topic>Dowling lattices</topic><topic>Dowling numbers</topic><topic>Eulerian numbers</topic><topic>Lattices</topic><topic>Mathematical analysis</topic><topic>Proving</topic><topic>Whitney numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mezo, Istvan</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mezo, Istvan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices</atitle><jtitle>Discrete mathematics</jtitle><date>2014-08-06</date><risdate>2014</risdate><volume>328</volume><spage>88</spage><epage>95</epage><pages>88-95</pages><issn>0012-365X</issn><eissn>1872-681X</eissn><abstract>In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.disc.2014.03.021</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-365X |
ispartof | Discrete mathematics, 2014-08, Vol.328, p.88-95 |
issn | 0012-365X 1872-681X |
language | eng |
recordid | cdi_proquest_miscellaneous_1551073722 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Analogue Construction Dowling lattices Dowling numbers Eulerian numbers Lattices Mathematical analysis Proving Whitney numbers |
title | A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A14%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20kind%20of%20Eulerian%20numbers%20connected%20to%20Whitney%20numbers%20of%20Dowling%20lattices&rft.jtitle=Discrete%20mathematics&rft.au=Mezo,%20Istvan&rft.date=2014-08-06&rft.volume=328&rft.spage=88&rft.epage=95&rft.pages=88-95&rft.issn=0012-365X&rft.eissn=1872-681X&rft_id=info:doi/10.1016/j.disc.2014.03.021&rft_dat=%3Cproquest_cross%3E1551073722%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1551073722&rft_id=info:pmid/&rft_els_id=S0012365X14001162&rfr_iscdi=true |