A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices

In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics 2014-08, Vol.328, p.88-95
1. Verfasser: Mezo, Istvan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1973 T.A. Dowling constructed a class of geometric lattices with fixed underlying finite groups. Dowling and M. Benoumhani deduced a number of identities satisfied by the Whitney numbers of these lattices. In addition, Remmel and Wachs gave a partition-theoretical interpretation for these numbers. We continue the study of this interpretation introducing an analogue of Eulerian numbers connected to Whitney numbers of the second kind. Moreover, bijective proofs are given for a number of formulas deduced analytically by Benoumhani.
ISSN:0012-365X
1872-681X
DOI:10.1016/j.disc.2014.03.021