Post curing effect of poly epoxy on visco-elastic and mechanical properties of different sandwich structures

Poly epoxy is a high performance room temperature cured epoxy system which provides excellent physical and mechanical properties. However, the effects of post curing of this resin system on the properties of different sandwich structures are unknown. This study aims to evaluate the effect of post cu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer composites 2013-04, Vol.34 (4), p.477-481
Hauptverfasser: Khan, Laraib Alam, Mahmood, Ali Hasan, Khan, Zaffar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly epoxy is a high performance room temperature cured epoxy system which provides excellent physical and mechanical properties. However, the effects of post curing of this resin system on the properties of different sandwich structures are unknown. This study aims to evaluate the effect of post curing (at 70°C for 2 hr) on the edgewise compressive and flexural strengths of a sandwich structure, constructed with Styrofoam and honeycomb as core materials and a plain weave carbon fabric as face sheet. Tested factors evaluated from edgewise compressive tests were as follows: peak load, compressive strength, and crash energy absorption of sandwich structures while core shear stress and bending stress of sandwich structures were determined and compared with flexural tests. It was observed that post curing affects significantly on the bending and compressive strengths of the sandwich structures. However, the data obtained for crash energy absorption suggested that the effect of post curing on the core shear strength and the total deflection was statistically insignificant. The matrix polymer was also inspected using dynamic‐mechanical thermal analysis to assess the changes in glass transition temperature and degree of conversion due to post cure. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.22436