Active Rare Class Discovery and Classification Using Dirichlet Processes

Classification is used to solve countless problems. Many real world computer vision problems, such as visual surveillance, contain uninteresting but common classes alongside interesting but rare classes. The rare classes are often unknown, and need to be discovered whilst training a classifier. Give...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer vision 2014-02, Vol.106 (3), p.315-331
Hauptverfasser: Haines, Tom S. F., Xiang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Classification is used to solve countless problems. Many real world computer vision problems, such as visual surveillance, contain uninteresting but common classes alongside interesting but rare classes. The rare classes are often unknown, and need to be discovered whilst training a classifier. Given a data set active learning selects the members within it to be labelled for the purpose of constructing a classifier, optimising the choice to get the best classifier for the least amount of effort. We propose an active learning method for scenarios with unknown, rare classes, where the problems of classification and rare class discovery need to be tackled jointly. By assuming a non-parametric prior on the data the goals of new class discovery and classification refinement are automatically balanced, without any tunable parameters. The ability to work with any specific classifier is maintained, so it may be used with the technique most appropriate for the problem at hand. Results are provided for a large variety of problems, demonstrating superior performance.
ISSN:0920-5691
1573-1405
DOI:10.1007/s11263-013-0630-3