Differential commuting operator and closed-form eigenfunctions for linear canonical transforms

The linear canonical transform (LCT) with a, b, c, d parameter plays an important role in quantum mechanics, optics, and signal processing. The eigenfunctions of the LCT are also important because they describe the self-imaging phenomenon in optical systems. However, the existing solutions for the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2013-10, Vol.30 (10), p.2096-2110
Hauptverfasser: Pei, Soo-Chang, Liu, Chun-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The linear canonical transform (LCT) with a, b, c, d parameter plays an important role in quantum mechanics, optics, and signal processing. The eigenfunctions of the LCT are also important because they describe the self-imaging phenomenon in optical systems. However, the existing solutions for the eigenfunctions of the LCT are divided into many cases and they lack a systematic way to solve these eigenfunctions. In this paper, we find a linear, second-order, self-adjoint differential commuting operator that commutes with the LCT operator. Hence, the commuting operator and the LCT share the same eigenfunctions with different eigenvalues. The commuting operator is very general and simple when it is compared to the existing multiple-parameter differential equations. Then, the eigenfunctions can be derived systematically. The eigenvalues of the commuting operator have closed-form relationships with the eigenvalues of the LCT. We also simplify the eigenfunctions for |a+d|>2 and a+d=±2, b≠0 into the more compact closed form instead of the integral form. For |a+d|>2, the eigenfunctions are related to the parabolic cylinder functions.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.30.002096