Reinforcement effect of nanodiamond on properties of epoxy matrix
Epoxy/nanocrystalline diamond nanocomposites composites were prepared by dispersing ultrasonically, 0.4, 0.7, 1.0, and 4.0 wt% acid‐treated nanocrystalline diamond (NCD) powder in epoxy matrix. Fourier infrared spectroscopy was utilized to study the moieties attached to the nanodiamond particles. Th...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2013-06, Vol.34 (6), p.811-818 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Epoxy/nanocrystalline diamond nanocomposites composites were prepared by dispersing ultrasonically, 0.4, 0.7, 1.0, and 4.0 wt% acid‐treated nanocrystalline diamond (NCD) powder in epoxy matrix. Fourier infrared spectroscopy was utilized to study the moieties attached to the nanodiamond particles. The trace elements present in NCD powder before and after acid treatment were analyzed by ion beam techniques. Thermomechanical properties of the nanocomposites showed that incorporation of low content (0.4 wt%) of nanodiamond powder into epoxy matrix enhanced the storage modulus, loss modulus, and hardness by ∼68, ∼55, and ∼86%, respectively, over neat epoxy. By increasing the concentration of modified NCD to 0.7 wt% resulted in lower values of hardness and thermomechanical properties but still remain higher than neat epoxy. An increasing trend in properties was again observed at 4 wt% concentration of modified nanofiller. The glass transition temperature was up shifted to ∼110°C over neat epoxy. The mechanisms responsible for enhanced properties of epoxy matrix are also discussed in detail. POLYM. COMPOS., 34:811–818, 2013. © 2013 Society of Plastics Engineers |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.22480 |