The indirect continuous-GMM estimation
A curse of dimensionality arises when using the Continuum-GMM procedure to estimate large dimensional models. Two solutions are proposed, both of which convert the high dimensional model into a continuum of reduced information sets. Under certain regularity conditions, each reduced information set...
Gespeichert in:
Veröffentlicht in: | Computational statistics & data analysis 2014-08, Vol.76, p.464-488 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A curse of dimensionality arises when using the Continuum-GMM procedure to estimate large dimensional models. Two solutions are proposed, both of which convert the high dimensional model into a continuum of reduced information sets. Under certain regularity conditions, each reduced information set can be used to produce a consistent estimator of the parameter of interest. An indirect CGMM estimator is obtained by optimally aggregating all such consistent estimators. The simulation results suggest that the indirect CGMM procedure makes an efficient use of the information content of moment restrictions. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2013.09.023 |