SHARP BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
In this article, we prove that the double inequality αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b) holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert mea...
Gespeichert in:
Veröffentlicht in: | Acta mathematica scientia 2014-05, Vol.34 (3), p.797-806 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove that the double inequality
αP(a,b)+(1-α)Q(a,b)〈M(a,b)〈βP(a,b)+(1-β)Q(a,b)
holds for any a,b 〉 0 with a ≠ b if and only if α≥1/2 and β≤[π(√2 lov (1+√2)-1]/[√2π-2) log (1+√2)]=0.3595…,where M(a, b), Q(a, b), and P(a, b) ave the Neuman-Sandor, quadratic, and first Seiffert means of a and b, respectively. |
---|---|
ISSN: | 0252-9602 1572-9087 |
DOI: | 10.1016/S0252-9602(14)60050-3 |