Travelling wave profiles in some models with nonlinear diffusion

We study some properties of the monotone solutions of the boundary value problem(P(u′))′-cu′+f(u)=0,u(-∞)=0,u(+∞)=1,where f is a continuous function, positive in (0,1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of [0,1) or [0,+∞) onto [0,+∞). This problem arises w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2014-05, Vol.235, p.469-481
Hauptverfasser: Coelho, Isabel, Sanchez, Luís
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study some properties of the monotone solutions of the boundary value problem(P(u′))′-cu′+f(u)=0,u(-∞)=0,u(+∞)=1,where f is a continuous function, positive in (0,1) and taking the value zero at 0 and 1, and P may be an increasing homeomorphism of [0,1) or [0,+∞) onto [0,+∞). This problem arises when we look for travelling waves for the reaction diffusion equation∂u∂t=∂∂xP∂u∂x+f(u)with the parameter c representing the wave speed. A possible model for the nonlinear diffusion is the relativistic curvature operator P(v)=v1-v2. The same ideas apply when P is given by the one-dimensional p-Laplacian P(v)=vp-2v. In this case, an advection term is also considered. We show that, as for the classical Fisher–Kolmogorov–Petrovski–Piskounov equations, there is an interval of admissible speeds [c∗,+∞) and we give characterisations of the critical speed c∗. We also present some examples of exact solutions.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2014.02.104