On an anti-Ramsey threshold for random graphs

For graphs G and H, let G⟶prbH denote the property that, for every proper edge-colouring of G (with an arbitrary number of colours) there is a totally multicoloured, or rainbow, copy of H in G, that is, a copy of H with no two edges of the same colour. We consider the problem of establishing the thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of combinatorics 2014-08, Vol.40, p.26-41
Hauptverfasser: Kohayakawa, Y., Konstadinidis, P.B., Mota, G.O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For graphs G and H, let G⟶prbH denote the property that, for every proper edge-colouring of G (with an arbitrary number of colours) there is a totally multicoloured, or rainbow, copy of H in G, that is, a copy of H with no two edges of the same colour. We consider the problem of establishing the threshold pHrb=pHrb(n) of this property for the binomial random graph G(n,p). More specifically, we give an upper bound for pHrb and we extend our result to certain locally bounded colourings that generalize proper colourings. Our method is heavily based on a characterization of sparse quasi-randomness given by Chung and Graham (2008).
ISSN:0195-6698
1095-9971
DOI:10.1016/j.ejc.2014.02.004