Performance analysis of Extended Non-Overlapping Binary Exponential Backoff algorithm over IEEE 802.15.4

This paper evaluates the effects of the Extended Non-Overlapping Binary Exponential Backoff (ENO-BEB) algorithm over IEEE 802.15.4 by building its performance models based on a 2-dimensional Markov chain. This algorithm differs from the previously proposed Non-Overlapping Binary Exponential Backoff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Telecommunication systems 2014, Vol.55 (1), p.39-46
Hauptverfasser: Lee, Seung-Youn, Shin, Youn-Soon, Lee, Kang-Woo, Ahn, Jong-Suk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper evaluates the effects of the Extended Non-Overlapping Binary Exponential Backoff (ENO-BEB) algorithm over IEEE 802.15.4 by building its performance models based on a 2-dimensional Markov chain. This algorithm differs from the previously proposed Non-Overlapping Binary Exponential Backoff (NO-BEB) algorithm for IEEE 802.11, where the next backoff range is fixed as the second half of the conventional exponentially enlarged range. The ENO-BEB algorithm maps the next backoff range to the last 1/2 j -th subrange of the conventional range where j is an integer standing for the number of consecutive channel capture failures. To measure its impacts of the degree of separation between two backoff ranges at two adjacent backoff stages, we generalize the conventional IEEE 802.15.4 Markov chain model by including the behavior of the ENO-BEB algorithm. The analytical performance model predicts that the ENO-BEB technique achieves better throughput for larger j , for example, up to 113 % and 21 % than the conventional BEB and NO-BEB algorithm, respectively when j and the total number of nodes are 3 and 60. Simulations confirm these numerical results with a 7 % difference.
ISSN:1018-4864
1572-9451
DOI:10.1007/s11235-013-9749-3