Antipruritic effects of the probiotic strain LKM512 in adults with atopic dermatitis
Abstract Background Evidence suggests that intestinal microbiota play an important role in the pathogenesis of atopic dermatitis (AD) through induction of immunosuppression and immune tolerance; however, the exact underlying mechanism is unclear. Few studies to date have examined the effects of prob...
Gespeichert in:
Veröffentlicht in: | Annals of allergy, asthma, & immunology asthma, & immunology, 2014-08, Vol.113 (2), p.209-216.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Background Evidence suggests that intestinal microbiota play an important role in the pathogenesis of atopic dermatitis (AD) through induction of immunosuppression and immune tolerance; however, the exact underlying mechanism is unclear. Few studies to date have examined the effects of probiotics on adult-type AD. Objective To examine the effects of the probiotic Bifidobacterium animalis subsp lactis LKM512 on adult-type AD and the expression of metabolites that are known to be influenced by gut microbiota in fecal samples. Methods Forty-four patients were randomly assigned to receive LKM512 or a placebo and underwent medical examinations. Fecal microbiota were analyzed with real-time polymerase chain reaction. Metabolomic analysis was conducted to search for antipruritic metabolites produced by intestinal bacteria using feces derived from 3 patients whose itch scores had improved using capillary electrophoresis with time-of-flight mass spectrometry. Antipruritic effects of kynurenic acid were observed using AD-induced NC/Nga mice. Results LKM512 administration alleviated itch in AD patients compared with controls and improved the dermatology-specific quality-of-life scores when compared with the controls. Administration of LKM512 also increased the expression of the antipruritic and antinociceptive metabolite kynurenic acid (KYNA) in patients whose itch score had improved after LKM512 treatment. In mouse experiments, scratching behavior counts tended to be decreased by KYNA injection when compared with no treatment. Conclusion LKM512 administration may exert antipruritic effects by increasing KYNA production. LKM512 could therefore be a potentially effective therapeutic candidate for the reduction of pruritus. Trial Registration umin.ac.jp/ctr Identifier: UMIN000005695. |
---|---|
ISSN: | 1081-1206 1534-4436 |
DOI: | 10.1016/j.anai.2014.05.002 |