Infrared Sensor-Based Aerosol Sanitization System for Controlling Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on Fresh Produce
An economical aerosol sanitization system was developed based on sensor technology for minimizing sanitizer usage, while maintaining bactericidal efficacy. Aerosol intensity in a system chamber was controlled by a position-sensitive device and its infrared value range. The effectiveness of the infra...
Gespeichert in:
Veröffentlicht in: | Journal of food protection 2014-06, Vol.77 (6), p.977-980 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An economical aerosol sanitization system was developed based on sensor technology for minimizing sanitizer usage, while maintaining bactericidal efficacy. Aerosol intensity in a system chamber was controlled by a position-sensitive device and its infrared value range. The effectiveness of the infrared sensor-based aerosolization (ISA) system to inactivate Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on spinach leaf surfaces was compared with conventional aerosolization (full-time aerosol treated), and the amount of sanitizer consumed was determined after operation. Three pathogens artificially inoculated onto spinach leaf surfaces were treated with aerosolized peracetic acid (400 ppm) for 15, 30, 45, and 60 min at room temperature (22 ± 2°C). Using the ISA system, inactivation levels of the three pathogens were equal or better than treatment with conventional full-time aerosolization. However, the amount of sanitizer consumed was reduced by ca. 40% using the ISA system. The results of this study suggest that an aerosol sanitization system combined with infrared sensor technology could be used for transportation and storage of fresh produce efficiently and economically as a practical commercial intervention. |
---|---|
ISSN: | 0362-028X 1944-9097 |
DOI: | 10.4315/0362-028X.JFP-13-531 |