Enhanced Photoactivity with Nanocluster-Grafted Titanium Dioxide Photocatalysts

Titanium dioxide (TiO2), as an excellent photocatalyst, has been intensively investigated and widely used in environmental purification. However, the wide band gap of TiO2 and rapid recombination of photogenerated charge carriers significantly limit its overall photocatalytic efficiency. Here, effic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-07, Vol.8 (7), p.7229-7238
Hauptverfasser: Liu, Min, Inde, Ryota, Nishikawa, Masami, Qiu, Xiaoqing, Atarashi, Daiki, Sakai, Etsuo, Nosaka, Yoshio, Hashimoto, Kazuhito, Miyauchi, Masahiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium dioxide (TiO2), as an excellent photocatalyst, has been intensively investigated and widely used in environmental purification. However, the wide band gap of TiO2 and rapid recombination of photogenerated charge carriers significantly limit its overall photocatalytic efficiency. Here, efficient visible-light-active photocatalysts were developed on the basis of TiO2 modified with two ubiquitous nanoclusters. In this photocatalytic system, amorphous Ti(IV) oxide nanoclusters were demonstrated to act as hole-trapping centers on the surface of TiO2 to efficiently oxidize organic contaminants, while amorphous Fe(III) or Cu(II) oxide nanoclusters mediate the reduction of oxygen molecules. Ti(IV) and Fe(III) nanoclusters-modified TiO2 exhibited the highest quantum efficiency (QE = 92.2%) and reaction rate (0.69 μmol/h) for 2-propanol decomposition among previously reported photocatalysts, even under visible-light irradiation (420–530 nm). The desirable properties of efficient photocatalytic performance with high stability under visible light with safe and ubiquitous elements composition enable these catalysts feasible for large-scale practical applications.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn502247x