Optical Properties of Single Plasmonic Holes Probed with Local Electron Beam Excitation
Similar to nanoparticles, nanoscale holes form a basic building block in a wide array of nanophotonic devices. Here we study the spectral and angular cathodoluminescence response of individual nanoholes with diameters ranging from 50 to 180 nm. Taking advantage of the deep-subwavelength excitation...
Gespeichert in:
Veröffentlicht in: | ACS nano 2014-07, Vol.8 (7), p.7350-7358 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Similar to nanoparticles, nanoscale holes form a basic building block in a wide array of nanophotonic devices. Here we study the spectral and angular cathodoluminescence response of individual nanoholes with diameters ranging from 50 to 180 nm. Taking advantage of the deep-subwavelength excitation resolution, we find that the holes can be excited efficiently at the edge of the hole and that the response becomes stronger in the near-infrared part of the spectrum for larger holes. Using finite-difference time-domain simulations, we characterize the resonant modes inside the holes. We measure the angle-resolved cathodoluminescence response and observe strong beaming toward the side of electron beam excitation, complementary to what was shown for nanoparticles. The angular response can be explained by assuming a coherent superposition of radiating dipole moments, where the contribution of in-plane magnetic and electric dipole components increases for larger diameters. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/nn502469r |