Bicontinuous Microemulsions for High Yield Wet Synthesis of Ultrafine Platinum Nanoparticles: Effect of Precursors and Kinetics

We demonstrate that for high yield wet synthesis of monodispersed nanoparticles high surfactant content bicontinuous microemulsions offer an advantageous template as particle size is limited by the embedding matrix whereas particle aggregation is largely prohibited by its structure. We synthesized p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2014-07, Vol.30 (28), p.8300-8307
Hauptverfasser: Negro, Emanuela, Latsuzbaia, Roman, Koper, Ger J. M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that for high yield wet synthesis of monodispersed nanoparticles high surfactant content bicontinuous microemulsions offer an advantageous template as particle size is limited by the embedding matrix whereas particle aggregation is largely prohibited by its structure. We synthesized platinum nanoparticles varying the reaction rate, metal precursor and reducing agent type and concentration, and the composition of the microemulsion in water content and oil type. High yields of up to 0.4% of metal produced per weight of template were achieved without affecting the particle size, ca. 2 nm. We showed that our method is robust in the sense that particle size is hardly dependent on synthesis conditions. This is attributed to the fact that the packing of surfactant on nanoparticle surfaces is the only parameter determining the particle size. It can only be slightly varied with ionic strength, headgroup hydration, and tail solvency through oil variation. Water content mainly affects the microemulsion stability and through that the colloidal stability of the nanoparticles. Hydrazine as a reducing agent poses a special case as it causes dimerization of the surfactant and hence modifies the surfactant parameter as well as the stability. Finally, we highlighted the differences in comparison to nanoparticle synthesis in standard water-in-oil microemulsions, and we propose a mechanism of particle formation.
ISSN:0743-7463
1520-5827
DOI:10.1021/la502055z