Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes

Recent work has demonstrated that charged gold nanoparticles (AuNPs) protected by an amphiphilic organic monolayer can spontaneously insert into the core of lipid bilayers to minimize the exposure of hydrophobic surface area to water. However, the kinetic pathway to reach the thermodynamically stabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2014-07, Vol.5 (1), p.4482-4482, Article 4482
Hauptverfasser: Van Lehn, Reid C., Ricci, Maria, Silva, Paulo H.J., Andreozzi, Patrizia, Reguera, Javier, Voïtchovsky, Kislon, Stellacci, Francesco, Alexander-Katz, Alfredo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent work has demonstrated that charged gold nanoparticles (AuNPs) protected by an amphiphilic organic monolayer can spontaneously insert into the core of lipid bilayers to minimize the exposure of hydrophobic surface area to water. However, the kinetic pathway to reach the thermodynamically stable transmembrane configuration is unknown. Here, we use unbiased atomistic simulations to show the pathway by which AuNPs spontaneously insert into bilayers and confirm the results experimentally on supported lipid bilayers. The critical step during this process is hydrophobic–hydrophobic contact between the core of the bilayer and the monolayer of the AuNP that requires the stochastic protrusion of an aliphatic lipid tail into solution. This last phenomenon is enhanced in the presence of high bilayer curvature and closely resembles the putative pre-stalk transition state for vesicle fusion. To the best of our knowledge, this work provides the first demonstration of vesicle fusion-like behaviour in an amphiphilic nanoparticle system. Gold nanoparticles coated with amphiphilic ligands can spontaneously insert into lipid bilayers, reducing hydrophobic interactions. Here, the authors show the key step in this process is similar to vesicle fusion: lipid tails from the bilayer protrude into water before encountering the nanoparticle.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms5482