Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase. Detection of the glutathione disulfide radical anion and the ascorbyl radical

The acetaminophen phenoxyl radical was generated by the oxidation of acetaminophen by horseradish peroxidase in a fast-flow ESR experiment, and its reaction with glutathione and ascorbate was studied. Glutathione reduces the phenoxyl radical of acetaminophen to regenerate acetaminophen and form the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1990-01, Vol.265 (2), p.844-847
Hauptverfasser: RAMAKRISHNA RAO, D. N, FISCHER, V, MASON, R. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The acetaminophen phenoxyl radical was generated by the oxidation of acetaminophen by horseradish peroxidase in a fast-flow ESR experiment, and its reaction with glutathione and ascorbate was studied. Glutathione reduces the phenoxyl radical of acetaminophen to regenerate acetaminophen and form the thiyl radical of glutathione. This thiyl radical reacts with the thiolate anion of glutathione to form the disulfide radical anion, which was detected and characterized by ESR spectroscopy. In the presence of ascorbate, the ascorbyl radical was produced by the reduction of the acetaminophen phenoxyl radical by ascorbate. This reaction results in the complete reduction of the free radical of acetaminophen, whereas the glutathione reduction of the phenoxyl radical of acetaminophen was not complete on the fast-flow ESR time scale of milliseconds. This suggests that ascorbate rather than glutathione is more likely to react with the acetaminophen phenoxyl free radical in vivo. In the presence of both ascorbate and higher concentrations of glutathione, the reaction with ascorbate is dominant. When cysteine was used in the place of reduced glutathione in the above assay system, the disulfide radical anion of cystine was observed in a manner similar to glutathione. These reactions may have significance in the detoxification of acetaminophen and the free radical metabolites of xenobiotics in general. Only in cells containing low levels of ascorbate can glutathione play a direct role in the detoxification of the acetaminophen phenoxyl radical.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)40126-9