Lack of vitamin D receptor causes stress-induced premature senescence in vascular smooth muscle cells through enhanced local angiotensin-II signals
Abstract Objectives The inhibition of the renal renin-angiotensin system by the active form of vitamin D contributes to the cardiovascular health benefits of a normal vitamin D status. Local production of angiotensin-II in the vascular wall is a potent mediator of oxidative stress, prompting prematu...
Gespeichert in:
Veröffentlicht in: | Atherosclerosis 2014-08, Vol.235 (2), p.247-255 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Objectives The inhibition of the renal renin-angiotensin system by the active form of vitamin D contributes to the cardiovascular health benefits of a normal vitamin D status. Local production of angiotensin-II in the vascular wall is a potent mediator of oxidative stress, prompting premature senescence. Herein, our objective was to examine the impact of defective vitamin D signalling on local angiotensin-II levels and arterial health. Methods Primary cultures of aortic vascular smooth muscle cells (VSMC) from wild-type and vitamin D receptor-knockout (VDRKO) mice were used for the assessment of cell growth, angiotensin-II and superoxide anion production and expression levels of cathepsin D, angiotensin-II type 1 receptor and p57Kip2 . The in vitro findings were confirmed histologically in aortas from wild-type and VDRKO mice. Results VSMC from VDRKO mice produced more angiotensin-II in culture, and elicited higher levels of cathepsin D, an enzyme with renin-like activity, and angiotensin-II type 1 receptor, than wild-type mice. Accordingly, VDRKO VSMC showed higher intracellular superoxide anion production, which could be suppressed by cathepsin D, angiotensin-II type 1 receptor or NADPH oxidase antagonists. VDRKO cells presented higher levels of p57Kip2 , impaired proliferation and premature senescence, all of them blunted upon inhibition of angiotensin-II signalling. In vivo studies confirmed higher levels of cathepsin D, angiotensin-II type 1 receptor and p57Kip2 in aortas from VDRKO mice. Conclusion The beneficial effects of active vitamin D in vascular health could be a result of the attenuation of local production of angiotensin-II and downstream free radicals, thus preventing the premature senescence of VSMC. |
---|---|
ISSN: | 0021-9150 1879-1484 |
DOI: | 10.1016/j.atherosclerosis.2014.05.911 |