Long-term and short-term responses of the photosynthetic electron transport to fluctuating light

Light energy absorbed by chloroplasts drives photosynthesis. When absorbed light is in excess, the thermal dissipation systems of excess energy are induced and the photosynthetic electron flow is regulated, both contributing to suppression of reactive oxygen species production and photodamages. Vari...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. B, Biology Biology, 2014-08, Vol.137, p.89-99
Hauptverfasser: Kono, Masaru, Terashima, Ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Light energy absorbed by chloroplasts drives photosynthesis. When absorbed light is in excess, the thermal dissipation systems of excess energy are induced and the photosynthetic electron flow is regulated, both contributing to suppression of reactive oxygen species production and photodamages. Various regulation mechanisms of the photosynthetic electron flow and energy dissipation systems have been revealed. However, most of such knowledge has been obtained by the experiments conducted under controlled conditions with constant light, whereas natural light condition is drastically fluctuated. To understand photosynthesis in nature, we need to clarify not only the mechanisms that raise photosynthetic efficiency but those for photoprotection in fluctuating light. Although these mechanisms appear to be well balanced, regulatory mechanisms achieving the balance is little understood. Recently, some pioneering studies have provided new insight into the regulatory mechanisms in fluctuating light. In this review, firstly, the possible mechanisms involved in regulation of the photosynthetic electron flow in fluctuating light are presented. Next, we introduce some recent studies focusing on the photosynthetic electron flow in fluctuating light. Finally, we discuss how plants effectively cope with fluctuating light showing our recent results.
ISSN:1011-1344
1873-2682
DOI:10.1016/j.jphotobiol.2014.02.016