Glucagon-like peptide-1 (7–36) but not (9–36) augments cardiac output during myocardial ischemia via a Frank–Starling mechanism
This study examined the cardiovascular effects of GLP-1 (7–36) or (9–36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7–3...
Gespeichert in:
Veröffentlicht in: | Basic research in cardiology 2014-09, Vol.109 (5), p.426-426, Article 426 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study examined the cardiovascular effects of GLP-1 (7–36) or (9–36) on myocardial oxygen consumption, function and systemic hemodynamics in vivo during normal perfusion and during acute, regional myocardial ischemia. Lean Ossabaw swine received systemic infusions of saline vehicle or GLP-1 (7–36 or 9–36) at 1.5, 3.0, and 10.0 pmol/kg/min in sequence for 30 min at each dose, followed by ligation of the left circumflex artery during continued infusion at 10.0 pmol/kg/min. Systemic GLP-1 (9–36) had no effect on coronary flow, blood pressure, heart rate or indices of cardiac function before or during regional myocardial ischemia. Systemic GLP-1 (7–36) exerted no cardiometabolic or hemodynamic effects prior to ischemia. During ischemia, GLP-1 (7–36) increased cardiac output by approximately 2 L/min relative to vehicle-controls (
p
= 0.003). This response was not diminished by treatment with the non-depolarizing ganglionic blocker hexamethonium. Left ventricular pressure–volume loops measured during steady-state conditions with graded occlusion of the inferior vena cava to assess load-independent contractility revealed that GLP-1 (7–36) produced marked increases in end-diastolic volume (74 ± 1 to 92 ± 5 ml;
p
= 0.03) and volume axis intercept (8 ± 2 to 26 ± 8;
p
= 0.05), without any change in the slope of the end-systolic pressure–volume relationship vs. vehicle during regional ischemia. GLP-1 (9–36) produced no changes in any of these parameters compared to vehicle. These findings indicate that short-term systemic treatment with GLP-1 (7–36) but not GLP-1 (9–36) significantly augments cardiac output during regional myocardial ischemia, via increases in ventricular preload without changes in cardiac inotropy. |
---|---|
ISSN: | 0300-8428 1435-1803 |
DOI: | 10.1007/s00395-014-0426-9 |