Suitability of Porcine Chondrocyte Micromass Culture To Model Osteoarthritis in Vitro

In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular pharmaceutics 2014-07, Vol.11 (7), p.2092-2105
Hauptverfasser: Schlichting, Niels, Dehne, Tilo, Mans, Karsten, Endres, Michaela, Stuhlmüller, Bruno, Sittinger, Michael, Kaps, Christian, Ringe, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In vitro tissue models are useful tools for the development of novel therapy strategies in cartilage repair and care. The limited availability of human primary tissue and high costs of animal models hamper preclinical tests of innovative substances and techniques. In this study we tested the potential of porcine chondrocyte micromass cultures to mimic human articular cartilage and essential aspects of osteoarthritis (OA) in vitro. Primary chondrocytes were enzymatically isolated from porcine femoral condyles and were maintained in 96-multiwell format to establish micromass cultures in a high-throughput scale. Recombinant porcine tumor necrosis factor alpha (TNF-α) was used to induce OA-like changes documented on histological (Safranin O, collagen type II staining), biochemical (hydroxyproline assay, dimethylmethylene blue method), and gene expression level (Affymetrix porcine microarray, real time PCR) and were compared with published data from human articular cartilage and human micromass cultures. After 14 days in micromass culture, porcine primary chondrocytes produced ECM rich in proteoglycans and collagens. On gene expression level, significant correlations of detected genes with porcine cartilage (r = 0.90), human cartilage (r = 0.71), and human micromass culture (r = 0.75) were observed including 34 cartilage markers such as COL2A1, COMP, and aggrecan. TNF-α stimulation led to significant proteoglycan (−75%) and collagen depletion (−50%). Comparative expression pattern analysis revealed the involvement of catabolic enzymes (MMP1, -2, -13, ADAM10), chemokines (IL8, CCL2, CXCL2, CXCL12, CCXL14), and genes associated with cell death (TNFSF10, PMAIPI, AHR) and skeletal development (GPNMB, FRZB) including transcription factors (WIF1, DLX5, TWIST1) and growth factors (IGFBP1, -3, TGFB1) consistent with published data from human OA cartilage. Expression of genes related to cartilage ECM formation (COL2A1, COL9A1, COMP, aggrecan) as well as hypertrophic bone formation (COL1A1, COL10A1) was predominantly found decreased. These findings indicating significant parallels between human articular cartilage and the presented porcine micromass model and vice versa confirm the applicability of known cartilage marker and their characteristics in the porcine micromass model. TNF-α treatment enabled the initiation of typical OA reaction patterns in terms of extensive ECM loss, cell death, formation of an inflammatory environment through the induction of genes coding fo
ISSN:1543-8384
1543-8392
DOI:10.1021/mp5000554